a2 United States Patent

Tang et al.

US009342389B2

US 9,342,389 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

NEIGHBOR BASED AND DYNAMIC HOT
THRESHOLD BASED HOT DATA

IDENTIFICATION

Applicant: SK Hynix Inc., Gyeonggi-do (KR)

Inventors: Xiangyu Tang, San Jose, CA (US);
Frederick K. H. Lee, Mountain View,
CA (US); Jason Bellorado, San Jose,
CA (US); Lingqi Zeng, Turlock, CA
(US); Zheng Wu, San Jose, CA (US)

Assignee: SK Hynix Inc., Gyeonggi-do (KR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 168 days.

Appl. No.: 14/169,877

Filed: Jan. 31, 2014

Prior Publication Data
US 2014/0304480 A1 Oct. 9, 2014

Related U.S. Application Data

Provisional application No. 61/808,529, filed on Apr.
4,2013.

Int. Cl1.

GO6F 12/00 (2006.01)

GO6F 11/00 (2006.01)

GO6F 3/06 (2006.01)

GO6F 11/34 (2006.01)

GO6F 12/12 (2016.01)

U.S. CL

CPC ... GO6F 11/00 (2013.01); GOGF 3/064

(2013.01); GOGF 3/0616 (2013.01); GO6F
3/0679 (2013.01); GO6F 11/3409 (2013.01);
GO6F 11/3471 (2013.01); GO6F 12/121
(2013.01)
Field of Classification Search
None
See application file for complete search history.

—

(56) References Cited

U.S. PATENT DOCUMENTS

6,321,240 Bl 112001 Chilimbi et al.
2006/0059474 Al* 3/2006 Bhansali GO6F 12/0276
717/151
2008/0282045 Al 11/2008 Biswas et al.
2010/0169586 Al* 7/2010 Chang GO6F 12/0246
711/154
2011/0113183 Al 5/2011 Leeetal.
2011/0225346 Al 9/2011 Goss et al.
2011/0264843 Al 10/2011 Haines et al.
2012/0297122 Al 11/2012 Gorobets et al.
2013/0024609 Al* 1/2013 Gorobets GO6F 12/0246
711/103
2014/0013027 Al* 1/2014 Jannyavula
Venkata GO6F 12/0866
711/103
2014/0013052 Al* 12014 Sawin ... GO6F 12/0862
711/122

FOREIGN PATENT DOCUMENTS

WO 2012158521 11/2012

OTHER PUBLICATIONS

Hsieh et al., “Efficient identification of hot data for flash memory
storage systems”, ACM Transactions on Storage, pp. 22-40, 2006.

(Continued)

Primary Examiner — Brian Peugh
(74) Attorney, Agent, or Firm — 1P & T Group LLP

57 ABSTRACT

An address is received. One or more neighbors associated
with the received address is/are determined. One or more
neighboring hot metrics is/are determined for the one or more
neighbors associated with the received address. A hot metric
for the received address is determined based at least in part on
the neighboring hot metrics.

23 Claims, 9 Drawing Sheets

[Receive an address

i/ 100

Determine one or more neighbors associated 101
with the received address

l

Determine one or more neighboring hot
metrics for the one or more neighbors
associated with the received address

102

l

Determine, based at least in part on the 104
neighboring hot metrics, a hot metric for the
received address

/—lﬁ
(\ End

US 9,342,389 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Park et al., “Hot Data Identification for Flash Memory Using Mul-
tiple Bloom Filters”, 2010.

Tjioe et al, “Making Garbage Collection Wear Conscious for Flash
SSD”, 2012.

The international Preliminary Report on Patentability issued by the
World Intellectual Property Organization for a PCT Appl. No. PCT/
US14/14506 on Oct. 15, 2015.

* cited by examiner

U.S. Patent

May 17, 2016 Sheet 1 of 9

{ Start)

A 4

US 9,342,389 B2

Receive an address

- 100

A4

Determine one or more neighbors associated
with the received address

101

A4

Determine one or more neighboring hot
metrics for the one or more neighbors
associated with the received address

- 102

A 4

Determine, based at least in part on the
neighboring hot metrics, a hot metric for the
received address

104

End

FIG. 1

U.S. Patent May 17, 2016 Sheet 2 of 9 US 9,342,389 B2

Hot LBA Hit Comparison

e

: ¢ 3
Neighbor Based

Other Technique

..

st B
N
o
o
o
e
5

FIG. 2

U.S. Patent May 17, 2016 Sheet 3 of 9 US 9,342,389 B2

300
A
Neighbor Based Hot Data Identifier
Settings V' 304
Range of
Neighbors
310 to Consider 312
Logical AN 4 pd
Block Neighbor . Hot Metric
Address g Gen%rator Combiner > ofLBA
(LBA) Y
Neighboring
LBA(s) of Hot
Neighbor(s) Metric(s) of
306 Neighbor(s)
¥ z
Hot Data Identifier
(Independent of
Neighbor(s))

FIG. 3

U.S. Patent May 17, 2016 Sheet 4 of 9 US 9,342,389 B2

102

{ Start |}

Y
Obtain a range of neighbors to consider

- 400

A4
Determine one or more neighboring addresses
on a first side of the received address based
on the range

- 402

Y

Determine one or more neighboring addresses
on a second side of the received address
based on the range

- 404

A4
Determine, for the neighboring addresses on
the first side, one or more neighboring hot
metrics on the first side

- 406

Y

Determine, for the neighboring addresses on

the second side, one or more neighboring hot
metrics on the second side

- 408

End

FIG. 4

U.S. Patent May 17, 2016 Sheet 5 of 9 US 9,342,389 B2

104

Does at least one
neighboring hot
metric correspond
to a hot value?

Yes No

v A 4

Set the hot metric for the / 502 Set the hot metric for the
received address {0 a hot value received address to a cold value

504]

o End <
___J

FIG.§

U.S. Patent May 17, 2016 Sheet 6 of 9 US 9,342,389 B2

{ Start)

A A
Receive an address 600
N 602
Determine a dynamic hot threshold 4
v
Determine a metric associated with the
604

received address to compare against the
dynamic hot threshold

X

Determine, based at least in part on the metric

associated with the received address and the | 606

dynamic hot threshold, a hot metric for the
received address

End

FIG. 6

U.S. Patent

Logical
Block
Address
(LBA)

May 17, 2016 Sheet 7 of 9

700
~

——@®—» Based Hot

Dynamic Hot Threshold Based Hot
Data Identifier

Settings } 702

\ 4

Dynamic Hot
Threshold
Generator

704

v

Dynamic Hot
706 Threshold
\ 4

Access Count

Data ldentifier

FIG. 7

US 9,342,389 B2

. Hot Metric

of LBA

U.S. Patent May 17, 2016 Sheet 8 of 9 US 9,342,389 B2

{ Start |

Y

Receive an address

- 800

A

Determine one or more neighboring hot
metrics for one or more neighbors associated
with the received address including by: (1)
dynamically determining a dynamic hot
threshold and (2) for each of the one or more
neighbors: (a) determining a metric associated 802
with a given neighbor to compare against the
dynamic hot threshold and (b) determining,
based at least in part on the metric associated
with the given neighbor and the dynamic hot
threshold, a hot metric for the given neighbor

Y

Determine, based at least in part on the
neighboring hot metrics, a hot metric for the
received address

- 804

End

FIG. 8

U.S. Patent May 17, 2016 Sheet 9 of 9 US 9,342,389 B2

900
~
Neighbor Based and Dynamic Hot Threshold Based
Hot Data ldentifier
Settings |/ 902
Y
Dynamic Hot

o Threshold |° %4
Generator

Dynamic Hot

906 Threshold
Logical =t
gggs Access Count
e i Based Hot
Address e . .
Data ldentifier Neighboring
(LBA)
Y Hot
LBA(s) of Metric(s) of
Neighbor(s) Neighbor(s)
.3 * Hot
é\ieighb?r Comparator » Metric of
enerator LBA
- -
910 912

FIG. 9

US 9,342,389 B2

1
NEIGHBOR BASED AND DYNAMIC HOT
THRESHOLD BASED HOT DATA
IDENTIFICATION

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/808,529 entitled REDUCING WRITE
AMPLIFICATION AND INCREASING THROUGHPUT
IN SSDS filed Apr. 4, 2013 which is incorporated herein by
reference for all purposes.

BACKGROUND OF THE INVENTION

Hot data identification is a process or technique is which
data is classified or identified as being either hot or cold. Hot
data (generally speaking) is data that will be invalidated
shortly in the future. Cold data (generally speaking) is data
that will remain valid for a long time in the future. In one
example application, solid state storage systems use hot data
identification techniques to group hot data together and cold
datatogether, for example when host writes are received (e.g.,
hot data is written to the cache whereas cold data is written to
the larger but slower main drive) or during garbage collection
(e.g., hot data in a block being garbage collected is written to
a first new block whereas cold data in that same block is
written to a second new block). Although a number ofhot data
identification techniques exist, improved hot data identifica-
tion techniques would be desirable. Such improved tech-
niques may (for example) improve the accuracy of hot data
identification, which in turn improves the efficiency of the
solid state system (e.g., by reducing write amplification,
which is defined as the ratio of the number of writes to solid
state storage compared to the number of host writes).

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG.1is a flowchart illustrating an embodiment of a neigh-
bor based hot data identification process.

FIG. 2 is a diagram which shows exemplary simulation
results comparing neighbor based hot data identification to
another hot data identification technique.

FIG. 3 is a diagram illustrating an embodiment of a system
which performs neighbor based hot data identifier system.

FIG. 4 is a flowchart illustrating an embodiment of a pro-
cess for determining one or more neighboring hot metrics.

FIG. 5 is a flowchart illustrating an embodiment of a pro-
cess for determining a hot metric using neighboring hot met-
rics.

FIG. 6 is a flowchart illustrating an embodiment of a
dynamic hot threshold based hot data identification process.

FIG. 7 is a diagram illustrating an embodiment of a system
which performs dynamic hot threshold based hot data iden-
tification.

FIG. 8 is a flowchart illustrating an embodiment of a pro-
cess for identifying hot data based on neighbors and using a
dynamic hot threshold.

FIG. 9 is a diagram illustrating an embodiment of a system
which performs neighbor based and dynamic hot threshold
based hot data identification.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition

10

15

20

25

30

35

40

45

50

55

60

65

2

of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

Two hot data identification techniques are described
herein. First, some examples describing various aspects of a
neighbor based hot data identification technique are
described. Then, examples of a hot data identification tech-
nique which uses a dynamic hot threshold are described.
Finally, some examples which show both techniques being
used together are described.

FIG. 1 is a flowchart illustrating an embodiment of a neigh-
bor based hot data identification process. In some embodi-
ments, the process is performed by a storage controller in a
solid state storage system. In some such embodiments, the
storage controller is implemented as or using a semiconduc-
tor device, such as an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA).

At100, an address is received. In one example, the received
address is a logical block address (LBA) in solid state storage
(e.g., NAND Flash). In some embodiments, the process of
FIG. 1 is performed during a host write and the address
received at step 100 is associated with a host write.

At 102, one or more neighboring hot metrics are deter-
mined for one or more neighbors associated with the received
address. As used herein, a neighboring hot metric refers to a
metric associated with a neighbor (e.g., a neighbor of the
address received at step 100). In some embodiments, the
neighboring hot metrics determined at step 102 are generated
on-the-fly so that the neighboring hot metrics are fresh or
otherwise up to date. Any one of a variety of hot data identi-
fication techniques may be used at step 102. For example, a
metric associated with the received address may be deter-
mined based on recency and/or frequency, and then that met-
ric is compared against some hot threshold.

In some embodiments, a (neighboring) hot metric is one of
two possible values: hot or cold. For example, the neighbor-
ing hot metrics determined at step 102 may be one of two
values: hot (e.g., aone) or cold (e.g., a zero). In some embodi-

US 9,342,389 B2

3

ments, a (neighboring) hot metric is a score. For example, the
neighboring hot metrics determined at step 102 may range in
value from one (e.g., very cold) to five (e.g., very hot).

At 104, a hot metric for the received address is determined
based at least in part on the neighboring hot metrics. In one
example, if any of the neighboring hot metrics determined at
step 102 corresponds to a hot value, then the hot metric for the
received address is set to a hot value.

In one example of how a hot metric generated according to
the process of FIG. 1 is used, the process of FIG. 1 may be
performed by a solid state storage system (e.g., a NAND
Flash storage system) during a host write. The exemplary
solid state storage system includes a cache (e.g., which has
quicker access times (e.g., it is faster to read from and/or write
t0), can tolerate more errors (e.g., compared to the non-cache
portion), and can tolerate more program/erase cycles (e.g., it
is more robust)). In this example, if an address (e.g., being
written to during the host write) is determined by the process
of FIG. 1to be hot data, then that data is written into the cache.
Conversely, if an address is determined to be cold data, then
that data is written into the non-cache portion.

In some applications it may be undesirable to use neighbor
based hot data identification during garbage collection. Using
solid state storage as an example, solid state storage does not
support in-place updates (e.g., unlike magnetic storage). For
example, when old data is superseded by some new data, the
old location or address (e.g., of the old data) in a page is
marked as invalid and the new data is written to anew location
or address in another page in the solid state storage. Over
time, the number of locations in a block that are invalid will
grow. To reclaim the block, the remaining valid locations are
written into another block, thus freeing the entire block in
solid state storage for some other use. This reclamation pro-
cess is referred to as garbage collection. A block which is
being garbage collected is likely to contain addresses which
are cold. As such, checking neighbors may result in too many
false positives during garbage collection in some solid state
storage systems.

A benefit to neighbor based hot data identification is that it
may better detect hot data when (e.g., solid state) storage is
first being written to compared to some other hot data iden-
tification techniques. For example, some other hot data iden-
tification techniques identify hot data by comparing the
access count of a location (e.g., the number of times a par-
ticular LBA has been accessed in the past) against a hot
threshold. If the access count is greater than the hot threshold,
then the location is declared to be hot. When a location is first
accessed, the access count for that location is zero and several
accesses are required to reach the hotness threshold before
that location is considered hot. Therefore, for the first few
accesses, locations will be misidentified as cold. In contrast,
neighbor based hot data identification will more quickly iden-
tify data as being hot because (at least in some embodiments)
if at least one neighbor under consideration has an access
count which has reached the hot threshold, then the given
location will be declared hot. FIG. 2 is a diagram which shows
exemplary simulation results comparing neighbor based hot
data identification to another hot data identification tech-
nique. As is shown in region 200 of the graph, the neighbor
based hot data identification tends to have better correct iden-
tification percentages when the access count is below ~2x10%.

FIG. 3 is a diagram illustrating an embodiment of a system
which performs neighbor based hot data identifier system. In
various embodiments, neighbor based hot data identifier 300
may be part of a storage controller (e.g., which reads from
and/or writes to solid state storage media) and/or may be
implemented using an ASIC or an FPGA. In some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments, neighbor based hot data identifier 300 is used only
during a host write and is not used during garbage collection.
For example, the LBA which is passed to neighbor based hot
data identifier 300 may be an LBA being written to (e.g., as
part of a host write). Naturally, neighbor based hot data iden-
tification techniques may be used during garbage collection
in other embodiments if desired.

Neighbor generator 310 receives the LBA and obtains a
range of neighbors to consider from settings 304. In one
example, settings 304 is implemented as a register and the
number of neighbors to consider is programmable (e.g., so
that more/less neighbors are considered). Based on the range
of neighbors to consider, neighbor generator 302 generates
one or more LBA(s) of the neighbor(s) which are passed to
hot data identifier 306.

Hot data identifier 306 generates one or more hot data
metric(s) of the neighbor(s). In this particular example, hot
data identifier 306 uses a hot data identifier technique which
is independent of the neighbors of the LBA to be written (i.e.,
it does not take into consideration the hotness of a neighbor).
Any appropriate technique may be employed by hot data
identifier 306.

The hot metric(s) of the neighbor(s) are passed from hot
data identifier 306 to combiner 312. As described above, a hot
metric may either be a hot/cold value or some score over a
range (e.g., a range of 1-5). In this particular example, if at
least one neighbor being evaluated is hot data, then a hot
metric with a hot value is output by combiner 312 (e.g.,
combiner 312 is an OR). If all of the neighbors have cold data,
then a hot metric corresponding to a cold value is output by
neighbor based hot data identifier 300. Any manner of com-
bination may be used by combiner 312.

Insome embodiments (e.g., relevant to this figure and other
figures described below), the information used to generate a
hot data metric is updated in real time. For example, the hot
data metric being generated by neighbor based hot data iden-
tifier 300 may directly or indirectly affect a hot data metric,
either for that LBA or another LBA. In one example, a gen-
erated hot metric may affect which block(s) is/are garbage
collected, which in turn affects program/erase counts for the
affected block(s), which in turn affects a subsequent hot met-
ric. Or, if the received LBA is associated with a host write,
then the host write may cause the program/erase count for that
LBA to increment, which in turn affects a subsequent hot
metric.

FIG. 4 is a flowchart illustrating an embodiment of a pro-
cess for determining one or more neighboring hot metrics. In
some embodiments, the process is used at step 102 in FIG. 1.
In the example shown, the processing performed by neighbor
based hot data identifier 300 in FIG. 3 is shown.

At 400, a range of neighbors to consider is obtained. For
example, suppose n=3. At 402, one or more neighboring
addresses on a first side of the received address is/are deter-
mined based on the range. In one example, if the received
address is ADDR and n=3, then step 402 generates the
addresses: (ADDR-3), (ADDR-2), and (ADDR-1). At 404,
one or more neighboring addresses on a second side of the
received address is/are determined based on the range. To
continue the example from above, step 404 generates the
addresses: (ADDR+1), (ADDR+2), and (ADDR+3). In FIG.
3, steps 402 and 404 are performed by controller 302.

At 406, for the neighboring addresses on the first side, one
or more neighboring hot metrics on the first side is/are deter-
mined. In one example, the following neighboring hot metrics
are determined: (ADDR-3)=cold, (ADDR-2)=cold, and
(ADDR-1)=cold. At 408, for the neighboring addresses on
the second side, one or more neighboring hot metrics on the

US 9,342,389 B2

5
second side is/are determined. For example, (ADDR+1)
=cold, (ADDR+2)=cold, and (ADDR+3)=hot.

FIG. 5 is a flowchart illustrating an embodiment of a pro-
cess for determining a hot metric using neighboring hot met-
rics. In some embodiments, the process is used at step 104 in
FIG. 1. In the example shown, the processing performed by
neighbor based hot data identifier 300 in FIG. 3 is shown. At
500, it is determined if at least one neighboring hot metric
corresponds to a hot value. If so, the hot metric for the
received address is set to a hot value at 502. If not, at 504, the
hot metric for the received address is set to a cold value.

If the example above were processed according to FIG. 5,
the hot metric for the received address would be set to a hot
value because the neighbor (LBA+3) has a neighboring hot
metric which corresponds to a hot value.

The following figures describe some examples of a hot data
identification technique which uses a dynamic hot threshold.
In some embodiments, the technique is used during a host
write. In some embodiments, the technique is used during
garbage collection.

FIG. 6 is a flowchart illustrating an embodiment of a
dynamic hot threshold based hot data identification process.
In some embodiments, the process is performed by a storage
controller in a solid state storage system. In some such
embodiments, the storage controller is implemented as or
using a semiconductor device, such as an application-specific
integrated circuit (ASIC) or a field-programmable gate array
(FPGA).

At 600, an address is received. For example, the address
may be an LBA within a block of a solid state storage system.
In some embodiments, the received address is associated with
a host write. In some embodiments, the received address is
associated with garbage collection (e.g., it is the address of
valid data within a block that also includes invalid data).

At 602, a dynamic hot threshold is determined. Unlike a
static hot threshold, a dynamic hot threshold changes over
time, for example as the state of the solid state storage system
changes. In some embodiments, a dynamic hot threshold is
determined based on one or more of the following: an average
access count in a block of interest (C,,), a measure of full-
ness of a cache associated with solid state storage (f), or some
measure of wear leveling associated with the solid state stor-
age (e.g., a wear leveling difference, the wear leveling of the
entire solid state storage, the wear leveling of a specific por-
tion of the solid state storage, etc.).

In some embodiments, a single dynamic hot threshold is
determined for the entire solid state storage drive (which may
include multiple solid state die). In some applications, the
storage controller cannot control where logical block
addresses are stored. For example, logical block addresses
can move from die to die with each garbage collection.

At 604, a metric associated with the received address to
compare against the dynamic hot threshold is determined.
Any appropriate technique may be used to determine the
metric at step 604. In some embodiments, the metric deter-
mined at step 604 is based on recency (e.g., tracked using a
timestamp associated with a last write to that address) as well
as frequency (e.g., tracked using access count). For example,
an address which is written both frequently and recently is
considered hot, but an address which is written frequently but
in the distant past or an address that was written recently but
infrequently is considered cold. Similarly, an address which
was written neither frequently nor recently would also be
considered cold.

At 606, a hot metric for the received address is determined
based at least in part on the metric associated with the
received address and the dynamic hot threshold. Using a

10

15

20

25

30

35

40

45

50

55

60

65

6

dynamic hot threshold at step 606 enables a system to gener-
ate hot metrics which adapt to different usage patterns. For
example, different users can have different usage patterns,
and even the same user can have different usage patterns over
time. In addition to or as an alternative to usage patterns, a
dynamic hot threshold enables a system to adapt to the con-
dition of the solid state storage itself, which varies over time.
For these reasons, a hot metric which is determined using a
dynamic hot threshold is desirable.

FIG. 7 is a diagram illustrating an embodiment of a system
which performs dynamic hot threshold based hot data iden-
tification. In the example shown, an [.BA is input to dynamic
hot threshold based hot data identifier 700. For example, the
LBA may be an address associated with a host write, or an
address which is associated with garbage collection (e.g., it is
an address within a block being garbage collected).

In this example, access count based hot data identifier 706
(e.g., internally) generates an access count for the received
LBA. Access count based hot data identifier 706 may use any
appropriate technique to track and/or determine access counts
for a given LBA. The access count is compared by access
count based hot data identifier 706 against a dynamic hot
threshold which is generated by dynamic hot threshold gen-
erator 704 (described in further detail below). In this example,
ifthe access count is less than the dynamic hot threshold, then
a hot metric having a cold value is output for the received
LBA. If the access count is greater than the dynamic hot
threshold, then a hot metric having a hot value is output for the
received LBA. As described above, the hot metric output by
dynamic hot threshold based hot data identifier 700 may be
either a hot/cold value or a value which spans a range of
values (e.g., a range of 1-5).

Dynamic hot threshold generator 704 uses the incoming
traffic (in the form of LBAs in FIG. 7) to adjust the dynamic
hot threshold. This is because two identical solid state storage
systems may beused in very different manners and depending
onthe usage, different hot thresholds will result. Dynamic hot
threshold generator 704 also uses any number of settings 702.
For example, the settings may specify values of constants
used to generate the dynamic hot threshold and/or what sys-
tem or state information to use in generating the dynamic hot
threshold. In some embodiments, the settings used by
dynamic hot threshold generator 704 begin with default or
initial values and are adjusted over time as the actual usage
pattern of the solid state storage system becomes more appar-
ent.

In some embodiments, dynamic hot threshold generator
704 generates a dynamic hot threshold using C,,, ., which is an
average access count of LBAs in a block of interest (e.g., a
block being garbage collected or the block being written to
during a host write). For example, the dynamic hot threshold
(T) may be T(C,)=1.2C,,,. In general, as the cache
becomes full (i.e., as fincreases), the dynamic hot threshold
increases. This has the effect of causing more data to be
classified as cold data and stored in the non-cache portion of
the solid state storage as opposed to the cache.

In some embodiments, dynamic hot threshold generator
704 generates a dynamic hot threshold using f, which is a
measure of fullness of a cache associated with solid state
storage, that is, T(f). As the cache sustains more wear com-
pared to the rest of the solid state storage (i.e., as W
increases), the dynamic hot threshold increases. In such cases
it is desirable to store more data in the non-cache portion of
the solid state storage since the cache is getting worn out
faster than the rest of the solid state storage.

In some embodiments, dynamic hot threshold generator
704 generates a dynamic hot threshold using w;, . which is a

US 9,342,389 B2

7

difference between the wear level of a cache (w_,,.) and the
wear level of a non-cache portion of the solid state storage
(w). In other words, T(w). This enables the dynamic hot
threshold to adapt to different usage patterns using the aver-
age access count (C,,.). For example, as the average access
count increases, the dynamic hot threshold increases. It does
not make sense, for example, to have the same hot threshold
for solid state storage systems which experience (e.g., radi-
cally) different usage patterns.

To illustrate exemplary values, C,,, may be some non-
negative real number, f may be a number between zero and
one (e.g., where zero means that the cache is empty and one
means that the cache is full), and w, 5 W_,., and w may be
numbers between zero and one (e.g., where one indicates
100% of a maximum number of program/erase cycles and
zero indicates 0% of a maximum number of program/erase
cycles).

In addition to the variables described above, any number of
constants and/or configurations which affect dynamic hot
threshold generation may be obtained from settings 702. For
example, the dynamic hot threshold (T) may be calculated
using:

T (Cavgxf; Wdiﬁ:k 1 Cavgexp (ko(Ff%) +k3(Wdiﬂ_ we)),

where k|, k,, k;, f,, and w, are constants which are set as
desired and are obtained from settings 702.

Access count based hot data identifier 706 is merely exem-
plary and is not intended to be limiting. Any appropriate hot
data identification technique which uses a threshold may be
used in combination with the dynamic hot threshold tech-
nique described herein.

In some embodiments, a dynamic hot threshold is used in
combination with neighbor based hot data identification. The
following figures show some examples of this.

FIG. 8 is a flowchart illustrating an embodiment of a pro-
cess for identifying hot data based on neighbors and using a
dynamic hot threshold. At 800, an address is received. As
described above, in various embodiments a received address
may be associated with a host write or with garbage collec-
tion.

At 802, one or more neighboring hot metrics for one or
more neighbors associated with the received address is/are
determined, including by: (1) determining a dynamic hot
threshold and (2) for each of the one or more neighbors: (a)
determining a metric associated with a given neighbor to
compare against the dynamic hot threshold and (b) determin-
ing, based at least in part on the metric associated with the
given neighbor and the dynamic hot threshold, a hot metric
for the given neighbor. In other words, one or more neighbor-
ing hot metrics are determined where each neighboring hot
metric is determined using a dynamic hot metric that changes
over time (e.g., as the state and/or usage of a solid state
storage system changes).

At 804, a hot metric for the received address is determined
based at least in part on the neighboring hot metrics. For
example, if at least one neighboring hot metric corresponds to
a hot value, then the hot metric for the received address is set
to a hot value.

FIG. 9 is a diagram illustrating an embodiment of a system
which performs neighbor based and dynamic hot threshold
based hot data identification. In the example shown, an LBA
is received by neighbor based and dynamic hot threshold
based hot data identifier 900. The received address is passed
to dynamic hot threshold generator 904 and neighbor genera-
tor 910 in neighbor based and dynamic hot threshold based
hot data identifier 900.

10

15

20

25

30

35

40

45

50

55

60

65

8

Using any number of parameters or settings from settings
902 and the received LBA, dynamic hot threshold generator
904 generates a dynamic hot threshold which is passed to
access count based hot data identifier 906. Neighbor genera-
tor 908 generates one or more LBAs for one or more neigh-
bors of the specified LBA using the received LBA and any
number of settings or parameters from settings 902. The
LBA(s) of the neighbors are passed from neighbor generator
910 to access count based hot data identifier 906.

Access count based hot data identifier 906 generates a
metric (for each neighbor) to compare against the dynamic
hot threshold and sends one or more neighboring hot metrics
of'the neighbors to comparator 912 based on the comparison.
In some embodiments, if at least one neighboring hot metric
corresponds to a hot value, then the hot metric of the LBA
which is output is set to a hot value (e.g., comparator 912 is an
OR).

The following table illustrates the performance improve-
ment, as measured by write amplification of the various hot
data identification techniques described herein. Write ampli-
fication is defined as the ratio of the total number of (e.g.,
actual) writes to solid state storage compared to the number of
host writes (e.g., which triggered the actual writes). For
example, if a host writes one LBA and in doing so causes a
garbage collection process to conduct one extra or additional
write in addition to the host write, the write amplification is
two. Write amplification is a useful parameter because reduc-
ing write amplification is an important aspect of solid state
storage management. A large write amplification value
increases the amount of time to perform a host write, which is
undesirable. Also, since solid state storage can only last for a
limited number of write cycles, reducing write amplification
can prolong the life of the solid state storage system.

In the table below, the neighbor based hot data identifica-
tion techniques (i.e., the last two rows) utilize a value of n=3
(i.e., three neighbors on each side of the LBA of interest are
considered). For the dynamic hot threshold techniques (i.e.,
the third row and last row), the threshold function used is
T(C,,)=1.2C,,,.

avg

TABLE 1

Comparison of Write Amplification Values for
Various Hot Data Identification Techniques

Hot Data Identification Technique Write Amplification

None 6.1
Some Other Hot Data 5.01
Identification Technique

Dynamic Hot Threshold Based 4.74
Neighbor Based 4.65
Both Dynamic Hot Threshold 4.55

Based and Neighbor Based

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:
1. A system, comprising:
a memory with a cache portion and a non-cache portion;
a neighbor generator configured to:
receive an address; and
determine one or more neighbors associated with the
received address;

US 9,342,389 B2

9

a hot data identifier configured to determine one or more
neighboring hot metrics for the one or more neighbors
associated with the received address; and

a comparator configured to determine, based at least in part
on the neighboring hot metrics, a hot metric for the
received address,

wherein the received address is written to the cache portion
of the memory when the determined hot metric for the
received address corresponds to a hot data value.

2. The system of claim 1, wherein the received address is

associated with a host write.

3. The system of claim 1, wherein the received address is
associated with garbage collection.

4. The system of claim 1, wherein the hot data identifier is
configured to determine the neighboring hot metrics, includ-
ing by:

obtaining a range of neighbors to consider;

determining one or more neighboring addresses on a first
side of the received address based on the range;

determining one or more neighboring addresses on a sec-
ond side of the received address based on the range;

determining, for the neighboring addresses on the first side,
one or more neighboring hot metrics on the first side; and

determining, for the neighboring addresses on the second
side, one or more neighboring hot metrics on the second
side.

5. The system of claim 1, wherein the comparator is con-
figured to determine the hot metric for the received address,
including by:

determining if at least one neighboring hot metric corre-
sponds to a hot value;

in the event it is determined that at least one neighboring
hot metric corresponds to the hot value, setting the hot
metric for the received address to the hot data value; and

in the event it is determined that at least one neighboring
hot metric does not correspond to the hot value, setting
the hot metric for the received address to a cold data
value.

6. The system of claim 1, wherein the hot data identifier is
configured to determine the neighboring hot metrics, includ-
ing by:

determining a dynamic hot threshold; and

for each of the one or more neighbors:
determining a metric associated with a given neighbor to

compare against the dynamic hot threshold; and
determining, based at least in part on the metric associ-

ated with the given neighbor and the dynamic hot

threshold, a hot metric for the given neighbor.

7. The system of claim 6, wherein the hot data identifier is
configured to determine the dynamic hot threshold, including
by determining the dynamic hot threshold using an average
access count of logical block addresses (LBAs) in a block of
interest.

8. The system of claim 6, wherein the hot data identifier is
configured to determine the dynamic hot threshold, including
by determining the dynamic hot threshold using a measure of
fullness of the cache portion of the memory.

9. The system of claim 6, wherein the hot data identifier is
configured to determine the dynamic hot threshold, including
by determining the dynamic hot threshold using a difference
between a wear level of the cache portion and a wear level of
the non-cache portion of the memory.

10. A system, comprising:

a memory including a cache portion and a non-cache por-

tion;

a dynamic hot threshold generator configured to determine
a dynamic hot threshold; and

10

15

20

25

30

35

40

45

50

55

60

10

a hot data identifier configured to:

receive an address;

determine a metric associated with the received address
to compare against the dynamic hot threshold; and

determine, based at least in part on the metric associated
with the received address and the dynamic hot thresh-
old, a hot metric for the received address,

wherein the received address is written to the cache
portion of the memory when the determined hot met-
ric for the received address corresponds to a hot data
value.

11. The system of claim 10, wherein the received address is
associated with a host write.

12. The system of claim 10, wherein the received address is
associated with garbage collection.

13. The system of claim 10, wherein the hot data identifier
is configured to determine the dynamic hot threshold includ-
ing by determining the dynamic hot threshold using an aver-
age access count of logical block addresses (LBAs) in a block
of interest.

14. The system of claim 10, wherein the hot data identifier
is configured to determine the dynamic hot threshold includ-
ing by determining the dynamic hot threshold using a mea-
sure of fullness of the cache portion of the memory.

15. The system of claim 10, wherein the hot data identifier
is configured to determine the dynamic hot threshold includ-
ing by determining the dynamic hot threshold using a difter-
ence between a wear level of the cache portion and the wear
level of the non-cache portion of the memory.

16. A method, comprising:

receiving an address;

determining one or more neighbors associated with the

received address;

using a processor to determine one or more neighboring

hot metrics for the one or more neighbors associated
with the received address;
determining, based at least in part on the neighboring hot
metrics, a hot metric for the received address; and

writing the received address to a cache portion of a memory
when the determined hot metric for the received address
corresponds to a hot data value.

17. The method of claim 16, wherein using the processor to
determine the neighboring hot metrics includes:

obtaining a range of neighbors to consider;

determining one or more neighboring addresses on a first

side of the received address based on the range;
determining one or more neighboring addresses on a sec-
ond side of the received address based on the range;
determining, for the neighboring addresses on the first side,
one or more neighboring hot metrics on the first side; and
determining, for the neighboring addresses on the second
side, one or more neighboring hot metrics on the second
side.

18. The method of claim 16, wherein determining the hot
metric for the received address includes:

determining if at least one neighboring hot metric corre-

sponds to a hot value;
in the event it is determined that at least one neighboring
hot metric corresponds to the hot value, setting the hot
metric for the received address to the hot data value; and

in the event it is determined that at least one neighboring
hot metric does not correspond to the hot value, setting
the hot metric for the received address to a cold data
value.

19. The method of claim 16, wherein using the processor to
determine the neighboring hot metrics includes:

determining a dynamic hot threshold; and

US 9,342,389 B2

11

for each of the one or more neighbors:
determining a metric associated with a given neighbor to
compare against the dynamic hot threshold; and
determining, based at least in part on the metric associ-
ated with the given neighbor and the dynamic hot
threshold, a hot metric for the given neighbor.

20. A method, comprising:

using a processor to determine a dynamic hot threshold;

and

receiving an address;

determining a metric associated with the received address

to compare against the dynamic hot threshold;
determining, based at least in part on the metric associated
with the received address and the dynamic hot threshold,
a hot metric for the received address; and
writing the received address to a cache portion of a memory
when the determined hot metric for the received address
corresponds to a hot data value.

21. The method of claim 20, wherein using the processor to
determine the dynamic hot threshold includes determining
the dynamic hot threshold using an average access count of
logical block addresses (LBAs) in a block of interest.

22. The method of claim 20, wherein using the processor to
determine the dynamic hot threshold includes determining
the dynamic hot threshold using a measure of fullness of the
cache portion of the memory.

23. The method of claim 20, wherein using the processor to
determine the dynamic hot threshold includes determining
the dynamic hot threshold using a difference between a wear
level of the cache portion and a wear level of a non-cache
portion of the memory.

#* #* #* #* #*

10

15

20

25

30

12

